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1. Introduction

Following the idea that the Chern-Simons gauge theory may be used to describe the coin-

cident M2-branes [1], Bagger and Lambert [2] as well as Gustavsson [3] have constructed

three dimensional N = 8 superconformal SO(4) Chern-Simons gauge theory based on 3-

algebra. It is believed that the BLG theory at level one describes two M2-branes on R8/Z2

orbifold [4].

The signature of the metric on 3-algebra in the BLG model is positive definite. This

assumption has been relaxed in [5] to study N coincident M2-branes with N > 2. The

so called BF membrane theory with arbitrary semi-simple Lie group has been proposed

in [5]. This theory has ghost fields, however, the unitarity returns by gauging the global

shift symmetry for the Bosonic and Fermionic ghost fields [6]. This gauged BF membrane

theory is argued to be equivalent to the three dimensional N = 8 SYM theory [7].

Another approach to study multiple coincident M2-branes is proposed by Aharony-

Bergman-Jafferies-Maldacena (ABJM) [8]. They consider a particular brane configuration

which preserves N = 3 supersymmetry. At low energy, by integrating out the massive

modes of the brane configuration one finds U(N)k × U(N)−k Chern-Simons conformal

field theory which preserves N = 6 supersymmetry. This theory is renormalizable and is

consistent even at high energies. By lifting the brane configuration to M-theory they have

shown that the gauge theory is equivalent to the low energy theory of N coincident M2-

branes in orbifold R8/Zk. Using the AdS-CFT correspondence, then they have proposed

the duality between N = 6 Chern-Simons theory at level k and M-theory on AdS4×S7/Zk.

For further study of the theory of multiple coincident M2-branes see [11].
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In this paper, we are interested in studying the entropy of the above gauge theory

at finite temperature. At weak coupling, λ ≪ 1, the entropy is given by the free field

theory [8]

S = 3V2N
2T 2

(

7ζ(3)

π
+O(λ)

)

. (1.1)

At strong coupling and at small k level, the entropy is given by the area of the Schwarzschild

AdS4 × S7/Zk [8]

S = V2T
2 2

7
2

33
π2N2 1√

λ
. (1.2)

The correction to the above entropy in which we are interested, i s coming from one loop

corrections to the Schwarzschild AdS4 × S7/Zk solution. At strong coupling and at large

k, one expects similar behavior for the entropy from the type IIA supergravity. We will

also find (1.2) from type IIA supergravity and its α′ correction. In the presence of higher

derivative corrections, the entropy can be calculated using the Wald formula [9] or the free

energy method [10].

An outline of the paper is as follows. In section two we briefly review the p-brane

solutions of M-theory at tree-level. In third section we compute the corrections to the

Schwarzschild AdS4 × S7 in the presence of higher derivative corrections to the eleven

dimensional supergravity action. In subsection (3.1) we calculate the entropy using the

Wald formula and in subsection (3.2) we find the same result for entropy using the free

energy method. In section four, we find the entropy of the U(N)k ×U(N)−k Chern-Simons

conformal field theory at strong coupling and at small k, which is given by the the entropy

of Schwarzschild AdS4 × S7/Zk at one-loop. In subsection (4.1), we calculate the entropy

of the thermal field theory at strong coupling and at large level k from studying the type

IIA supergravity, and find its α′ correction. Finally in the last section, we calculate the

entropy of Schwarzschild AdS7 × S4 at one-loop which is the entropy of the world-volume

theory of N coincident M5-branes at strong coupling.

2. Review of M-theory

The eleven dimensional supergravity action and its one loop corrections is given by

S =
1

2κ2
11

∫

d11x
√−g

(

R− 1

2n!
F 2

(n) + γW

)

, (2.1)

where γ = 4π2κ
4
3
11/3 and W in terms of the Weyl tensors is

W = ChmnkCpmnqCh
rspCq

rsk +
1

2
ChkmnCpqmnCh

rspCq
rsk . (2.2)

One set of solutions to the tree-level part of the above action is the non-extremal p-brane

solutions in D = 11 dimensional space-time (see e.g. [13])

ds2 = H(r)−
d−2
D−2

(

− f(r)dt2 +

p
∑

i=1

(dxi)2
)

+H(r)
p+1
D−2

(

f(r)−1dr2 + r2dΩ2
d−1

)

,

Fti1···ipr = ǫti1···iprH(r)−2 Q

rd−1
, (2.3)
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where D = (p+ 1) + d and d is the number of dimensions transverse to the p-branes. The

functions H and f are H(r) = 1 +
(

L
r

)d−2
and f(r) = 1 −

(

r0
r

)d−2
. In the above equation

the relation between L and Q is

L2(d−2) + Ld−2rd−2
0 =

Q2

(d− 2)2
. (2.4)

For r0 = 0 we obtain the extremal solution, depending only on a single parameter, Q,

related to the charge density of the BPS p-brane. For r0 6= 0 a horizon develops at r = r0.

To obtain the near horizon geometry, we take the limit r ≪ L. In this limit the relation (2.4)

simplifies to Ld−2 = Q/(d− 2), and the non-extremal solution becomes

ds2 =
( r

L

)

2(d−2)
p+1

[

−
(

1 −
(r0
r

)d−2
)

dt2 +

p
∑

i=1

(dxi)2

]

+

(

L
r

)2

(

1 −
(

r0
r

)d−2
)dr2 + L2(dΩd−1)

2,

Fti1···ipr = (d− 2)ǫti1···ipr
rd−3

hd−2
, (2.5)

which is the product space of Sd−1 with the Schwarzschild black hole in AdSD−d+1. Ac-

cording to the AdS/CFT correspondence, there is a finite temperature field theory dual to

the M-theory on Schwarzschild black hole in AdSD−d+1 × Sd−1.

3. M2-branes in flat space

The field theory of large N M2-branes in flat space is dual to M-theory on AdS4 × S7 and

its finite temperature is dual to M-theory on Schwarzschild AdS4×S7. At strong coupling,

the filed theory is dual to eleven dimensional supergravity on Schwarzschild AdS4 × S7.

The entropy and the temperature of field theory are given by the corresponding quantities

in Schwarzschild AdS4 × S7,

S = V2T
2 2

7
2

33
π2N

3
2 , (3.1)

which is the area of the horizon of Schwarzschild AdS4 × S7. The background and sub-

sequently the entropy and temperature of the field theory are modified by the one-loop

corrections. By including the higher derivative terms one needs to consider a general

ansatz for the metric and field strength, and then finds the deformations of the near hori-

zon geometry of M2-branes. We start with the following ansatz for the metric

ds2 = S2n(r)H2(r)

(

K2(r)dτ2 + P 2(r)dr2 +
2
∑

i=1

dx2
i

)

+ L2S2(r)dΩ2
7 , (3.2)

where H(r) = r
L . At tree-level, the above functions are

K(r) =

(

1 − r30
r3

)
1
2

, P (r) =
L2

2r2

(

1 − r30
r3

)− 1
2

, S(r) = 1 , (3.3)
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where we have made the space-time Euclidean and changed the variable r in (2.5) to r2/L.

The electric field strength at tree-level is also given by Fτx1x2r = 3 r2

L3 . Considering the fact

that the charge of membranes is independent of the loop corrections, we restrict the field

strength of M2-branes to the following form

Fτx1x2r =
6r4

L5
K(r)P (r)S4n−7(r) . (3.4)

Using the above ansatz, one writes the action (2.1) as an integration over r

I = −βV2V7

2κ2
11

∫

dr

(

L + γW
)

, (3.5)

where

L = S4n+7r4L3KP

(

R− 1

2

1

4!
F 2

(4)

)

, W = S4n+7r4L3KPW . (3.6)

The Euler-Lagrange equations are

∂L
∂Φ

− d

dr

∂L
∂Φ′ +

d2

dr2
∂L
∂Φ′′ = −γ

(

∂W
∂Φ

− d

dr

∂W
∂Φ′ +

d2

dr2
∂W
∂Φ′′

)

≡ −γωΦ , (3.7)

where (Φ = {K,P, S}). The left hand side can be computed by inserting the ansatz (3.2)

and (3.4) into the supergravity action. The right hand side of the Euler-Lagrange equation

belong to the next order of perturbations so we just need to compute it by inserting the

tree-level solutions. The value of W is

W =
1152

L8

(

r120

r12
− 7

50

r60
r6

+
1533

4000

)

. (3.8)

In the above relation the first term is coming from AdS4 and the other terms result from

the fact that we have considered the eleven dimensional metric in which the radii of AdS4

and S7 are not equal. These terms makes the entropy to be different from the one that has

been found in [12] in which only the AdS4 part has been considered.1

The right hand sides for the Euler-Lagrange equations (3.7) are given by

ωK = − 6

25

1

L3r
17
2 (r3 − r30)

1
2

(

1533r12 + 3136r60r
6 + 129472r3r90 − 160800r120

)

,

ωP = −12

25

(r3 − r30)
1
2

L5r
19
2

(

1533r12 − 3136r60r
6 + 1344r3r90 − 26400r120

)

, (3.9)

ωS = −36792

25

1

L3r10

((

n− 29

20

)

r12 +
224

219

(

n− 47

56

)

r60r
6

−192

73
(n− 1)r3r90 +

800

511

(

n− 7

4

)

r120

)

.

1Notice that in D3-brane case the radii of AdS5 and S
5 are equal so that the value of W for 5 dimension

and 10 dimension are the same.
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In order to solve the Euler-Lagrange equations we use the perturbative approach. We

consider the solutions to be just some corrections to the tree-level solutions

K(r) =

(

1 − r30
r3

)
1
2

(1 + γX(r)) ,

P (r) =
L2

2r2

(

1 − r30
r3

)− 1
2

(1 + γY (r)) ,

S(r) = (1 + γZ(r)) . (3.10)

Inserting them into the left hand side of the Euler-Lagrange equations one finds the fol-

lowing differential equations for perturbed functions:

0 = 100L6r10
(

n+
7

2

)[

r(r3 − r30)Z
′′(r) + 3

(

r3 − r30
2

)

Z ′(r) − 3r2Z(r)

]

− 300L6r12Y (r)

−100L6r10(r3 − r30)Y
′(r) + 4599r12 + 9408r6r60 + 388416r3r90 − 482400r120 ,

0 = 300L6r10
(

n+
7

2

)[(

r3 − r30
2

)

Z ′(r) − r2Z(r)

]

− 300L6r12Y (r)

+100L6r10(r3 − r30)X
′(r) + 4599r12 − 9408r6r60 + 4032r3r90 − 79200r120 , (3.11)

0 = 1500(n2 + 7n + 7)L6r10
[

r(r3 − r30)Z
′′(r) + 4

(

r3 − r30
4

)

Z ′(r) − 4
n2 + 7n− 91

8

n2 + 7n+ 7
r2Z(r)

]

+500

(

n+
7

2

)

L6r10
[

r(r3 − r30)X
′′(r) + 5

(

r3 − r30
10

)

X ′(r)

−3

(

r3 − r30
2

)

Y ′(r) − 12r2Y (r)

]

+(91980n − 133371)r12 + 94080

(

n− 47

56

)

r6r60

−241920(n − 1)r9r30 + 144000

(

n− 7

4

)

r120 .

There is an interesting solution to the above equations. If one considers

n = −7

2
, (3.12)

the above equations simplify drastically, i.e. the Z(r) dependence in the first two equations

will be canceled. Moreover, for n = −7
2 the area of the horizon in terms of r0 is independent

of S(r). We shall show that this simplifies the Wald formula when calculating the entropy.

To find the solution for above differential equations one should use the boundary

condition at the horizon. Solving the first equation gives rise to the following exact value

for Y (r)

Y (r) =
1

L6

(

1533

100
+

3568

25

r30
r3

+
2784

25

r60
r6

− 536
r90
r9

)

, (3.13)
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where the constant of differential equation has been fixed by imposing the fact that the

value of Y (r) at horizon, r = r0, must be finite. Inserting the value of Y (r) into the second

equation, one will find the following solution for X(r):

X(r) =
1

L6

(

c− 3568

25

r30
r3

− 3568

25

r60
r6

+ 88
r90
r9

)

, (3.14)

where c is a constant which can not be fixed by the boundary conditions. Instead, up to

the first order of γ, it can be set to zero by time scaling. Finally replacing all the above

values in the third equation, one finds the following second order differential equation for

Z(r)

0 = −7875L6r11(r3 − r30)Z
′′(r) − 31500L6r10

(

r3 − 1

4
r30

)

Z ′(r) + 141750L6r12Z(r)

−455301r12 − 408240r6r60 + 1088640r3r90 − 756000r120 . (3.15)

Unlike X(r) and Y (r) which have a simple series solution, here one can not find such a

behavior for Z(r). One may try to solve this differential equation with the well defined

boundary conditions at the horizon and at infinity. The solution is needed for studying

the Kaluza-Klein modes. However as we will see we do not need to know the exact form

of Z(r) for calculating the thermodynamical quantities such as temperature and entropy

in which we are interested in this paper.

3.1 Entropy from the Wald formula

One way of calculating the entropy in a higher derivative theory of gravity is the Wald

formula [9]. It is given by

S =
4π

2κ2
11

∫

dxH
√

gH
∂

∂Rµνρλ
(L+ γW )g⊥µρ g

⊥
νλ , (3.16)

where the superscript H refers to the horizon and g⊥ is the orthogonal metric to the

horizon. In our model the orthogonal directions are τ and r, i.e. g⊥rr = grr and g⊥ττ = gττ .

As we have mentioned before for n = −7
2 the horizon area in terms of r0 does not modify

by the higher derivative corrections, so the first term in above formula which is the area

of horizon at leading order does not modify either. So we need only the tree-level solution

to calculate the first term. On the other hand, the second term is proportional to γ, so

to the first order of γ one has to replace the tree-level solution into the second term too.

Therefor the first term is

S1 =
4π

2κ2
11

V2V7L
5r20 , (3.17)

and the second term is

S2 =
4π

2κ2
11

V2V7L
5r20

(

34616

250

γ

L6

)

. (3.18)

The final result for entropy will be

S =
4π

2κ2
11

V2V7L
5r20

(

1 +
34616

250

γ

L6

)

. (3.19)
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To write the above entropy in terms of the temperature, we recall that the temperature of

the black hole is given by the surface gravity at the horizon

κ̂ = 2πT =
√
grr

d

dr

√
gττ |r=r0 =

1

rP

d

dr
(rK) +

nK

PS

d

dr
S|r=r0 . (3.20)

As we have anticipated before the temperature is independent of Z(r) because the second

term is zero. Note that at horizon dS
dr = γ dZ

dr is finite (3.15) and K/P = 0. However

the temperature does depend on corrections of K and P . So the entropy in terms of

temperature depends on the loop correction of K and P and is independent of Z. The

temperature is

T =
3

2π

r0
L2

(

1 +
γ

L6

1383

20

)

, (3.21)

and the entropy in terms of temperature is

S =
V2V7

2κ2
11

(

16

9
π3L9T 2

)(

1 +
41

250

γ

L6

)

, (3.22)

Using the relations L9 = N
3
2κ2

11

√
2

π5 , whereN is the total number of membranes and V7 = π4

3

one finds

S = V2T
2

{

2
7
2

33
π2N

3
2 +

41

250

(

2π

3

)5

2
1
6 3π

7
3N

1
2

}

. (3.23)

Note that the coefficient of the last term, 41
250 , is different from the value found in [12]. This

is resulted from the fact that we have considered eleven dimensional metric in which W is

given by (3.8) instead of four dimensional metric considered in [12] in which W is given by

the first term of (3.8). To double check our results we calculate the entropy from the free

energy in the next section.

3.2 Entropy from free energy

Another way of finding the entropy of a higher derivative theory is to use the free en-

ergy. Following [10], one can identify the free energy of the theory with the Euclidean

gravitational action, I, times the temperature, T , i.e.

I = βF , (3.24)

where β = 1
T . The calculation of the Euclidean action is divergent at large distances,rmax,

and requires a subtraction. The integral must be regulated by subtracting off its zero

temperature limit, i.e.

F = lim
rmax→∞

I − I0
β

, (3.25)

where I0 is the zero temperature limit in which the periodicity of the Euclidean time is

defined by β′. One must adjust β′ so that the geometry at r = rmax is the same in the

two cases, i.e. the black hole and its zero temperature. This can be done by equating the

circumference of the Euclidean time in two cases
∫ β′

0

√

g
(zero temperature)
ττ |rmaxdτ =

∫ β

0

√

g
(black hole)
ττ |rmaxdτ. (3.26)

– 7 –
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Having found F , the entropy in terms of the free energy is then given by S = −∂F
∂T .

Let us now try to find the entropy of membranes with this approach. To simplify

the calculations we use the observation made in the previous section that the entropy and

temperature are independent of Z(r). So we set Z(r) equal to zero in this approach. The

Euclidean action and its regulator are

I = −βV2V7

2κ2
11

∫ rmax

r0

dr(L + γW)

= 4
βV2V7

2κ2
11

L3(r3max − r30)

[

1 − γ

L6

(

32193

500
+

6968

25

r30
r3max

+
4784

25

r60
r6max

+ 48
r90
r9max

)]

,

I0 = −β
′V2V7

2κ2
11

∫ rmax

0
dr(L + γW)

= 4
β′V2V7

2κ2
11

L3r3max

[

1 − γ

L6

(

32193

500

)]

, (3.27)

and the relation between β and β′ is given by β′ = βK(r)|rmax . The free energy then

becomes

F = lim
rmax→∞

I − I0
β

= −V2V7

2κ2
11

2r30L
3

(

1 +
103807

500

γ

L6

)

, (3.28)

In terms of temperature it becomes

F = −V2V7

2κ2
11

(

16

27
π3L9T 3

)(

1 +
41

250

γ

L6

)

. (3.29)

Finally, the entropy is given by

S = 3
V2V7

2κ2
11

(

16

27
π3L9T 2

)(

1 +
41

250

γ

L6

)

. (3.30)

This is exactly the entropy that we have found in (3.22) using the Wald formula.

4. M2 branes in orbifold space

It has been conjectured that N = 6 superconformal Chern-Simons matter theories at level

k with gauge group Uk(N) × U−k(N) is dual to M-theory on AdS4 × S7/Zk [8]. At finite

temperature and at strong ’t Hooft coupling λ = N/k, the entropy of field theory is given

by the entropy of Schwarzschild black hole in AdS4 × S7/Zk, (1.2). In this section we

are going to find the correction to this entropy from higher derivative corrections in the

gravity side. In the presence of higher derivative terms, the Schwarzschild AdS4 × S7/Zk

background is changing. We consider the same ansatz for the AdS4 part as before. So we

choose the following ansatz for the eleven dimensional metric

ds2 = S−7(r)H2(r)

(

K2(r)dτ2 + P 2(r)dr2 +
2
∑

i=1

dx2
i

)

+ L2S2(r)ds2S7/Zk
, (4.1)

– 8 –
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where the orbifold S7/Zk can be written as follows (see e.g. [14] or [15])

ds2S7/Zk
= ds2CP 3 + (dα+ ω)2, (4.2)

where

ω =
1

2

(

cos2 ξ − sin2 ξ

)

dψ +
1

2
cos2 ξ cos θ1dφ1 +

1

2
sin2 ξ cos θ2dφ2 ,

ds2CP 3 = dξ2 + cos ξ2 sin2 ξ

(

dψ +
cos θ1

2
dφ1 −

cos θ2
2

dφ2

)2

+
1

4
cos2 ξ

(

dθ2
1 + sin2 θ1dφ

2
1

)

+
1

4
sin2 ξ

(

dθ2
2 + sin2 θ2dφ

2
2

)

.(4.3)

and the variables run the values 0 ≤ ξ < π
2 , 0 ≤ χi < 4π, 0 ≤ φi ≤ 2π and 0 ≤ θi < π. The

Zk orbifold in α direction gives a periodicity as α ∼ α+ 2π
k . The metric of S7/Zk in terms

of the above variables simplifies to

ds2S7/Zk
= dα2 + dξ2 +

1

4
(dψ2 + cos2 ξdφ2

1 + sin2 ξdφ2
2 + cos2 ξdθ2

1 + sin2 ξdθ2
2)

+
1

2
(cos2 ξ − sin2 ξ)dαdψ +

1

2
cos2 ξ cos θ1dαdφ1 +

1

2
sin2 ξ cos θ2dαdφ2

+
1

4
cos2 ξ cos θ1dψdφ1 −

1

4
sin2 ξ cos θ2dψdφ2 . (4.4)

Note that the volume of S7/Zk in terms of the volume of CP3 is Vol(S7/Zk) = 2π
k Vol(CP3).

By looking at the metric one finds that the scalar curvatures behave as RAdS ∼
RS7/Zk

∼ 1/L2. Using the fact that 1-loop correction behaves asW ∼ R4, one observes that

the ratio of one loop correction to supergravity is of order W/R ∼ 1/L6 ∼ 1/(Nk) ∼ λ/N2.

To find the numeric factor, we note that with the above ansatz the differential equations

in (3.12) and the temperature do not change. However the free energy (3.29) changes by a

factor of 1
k due to integration over α, i.e.

F = −1

k

V2V7

2κ2
11

(

16

27
π3L9T 3

)(

1 +
41

250

γ

L6

)

. (4.5)

To write the free energy in terms of the number of M2-branes, we note that the total

number of M2-branes is given by

N =
1

2κ2
11

∫

S7/Zk

∗F(4) =
1

k

1

2κ2
11

∫

S7

∗F(4) , (4.6)

this gives L9 = (kN)
3
2κ2

11

√
2

π5 . So the free energy becomes

F = −1

k
V2T

3

{

2
7
2

34
π2(kN)

3
2 +

41

250

(

2π

3

)5

2
1
6π

7
3 (kN)

1
2

}

. (4.7)

In terms of the ’t Hooft coupling it becomes

F = −V2T
3

{

2
7
2

34
π2N

2

√
λ

+
41

250

(

2π

3

)5

2
1
6π

7
3

√
λ

}

. (4.8)
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The first term is the same entropy as in (1.2), and the second term is the one loop correction

in the gravity side. Note that this expression is valid for strong ’t Hooft coupling and for

large N , i.e. the second term is small with comparing to the first term.

4.1 Large k limit

The radius of α circle is large whenever k5 ≪ N , so the M-theory description is valid for

small k. However for larger value of k the circle becomes small, the curvature becomes

large, and so all higher derivative terms of M-theory are relevant to our calculation of

entropy. Hence, in this case, one should reduce the M-theory to a weakly coupled IIA

string theory. So consider the reduction of the M-theory background to the string frame

of IIA as

ds2D=11 = e−2φ/3ds2IIA + e4φ/3(R11dα̃+A)2 , (4.9)

where R11 = g
2/3
s lp is the radius of the eleventh direction with angle α̃. Compar-

ing the above metric with (4.1), one finds α̃ = kα, the string coupling to be g2
se

2φ =

g2
sL

3/(R3
11k

3) = 25/2π
√

N/k5, and the metric in IIA string theory to be (kR11/L)ds2IIA =

ds2AdS4
+ L2ds2CP 3. Reduction also gives a two form magnetic field strength as

F(2) = dA = kdω . (4.10)

Additionally, we have a four form electric field strength as before which is Fτx1x2r = 3r2

L3 .

The type IIA prescription is valid if k5 ≫ N . By looking at the metric one finds

that the scalar curvatures behave as RAdS ∼ RCP 3 ∼ kR11/L
3 ∼

√

k/N . The first α′

correction to the type IIA effective action can be written in terms of W . Using the fact

that W behaves as W ∼ R4, one observes that the ratio of α′-correction to supergravity

is of order W/R ∼ (k/N)3/2. On the other hand, the ratio of one loop string correction to

supergravity is of order R4/(e−2φR) ∼ 1/Nk. Since loop correction of M-theory and type

IIA both behave as 1/Nk, one expects that the numerical value of string loop correction

to be the same as the M-theory loop correction (4.8). So we concentrate on α′ correction.

If N ∼ k ≫ 1, then string loop correction is suppressed and α′-correction is important.

Considering the α′ corrections to the effective action, we are going to find their effects on

the background solution and subsequently on the entropy. So consider the Lagrangian of

type II theory in the presence of first α′ correction which is given by

S = − 1

16πG10

∫

d10x
√
g

{

e−2φ(R+ 4(∂φ)2) − 1

2

1

4!
F 2

(4) −
1

2

1

2!
F 2

(2) + γe−2φW

}

, (4.11)

where γ = 1
8ζ(3)(α

′)3. We choose the following ansatz for the metric

ds2IIA = (
L

kR11
)

[

S−6(r)

(

r

L

)2(

K2(r)dτ2 + P 2(r)dr2 +
2
∑

i=1

dx2
i

)

+ L2S2(r)ds2CP3

]

,

(4.12)

and for the electric four form

Fτx1x2r =
6r4

L5
K(r)P (r)S−18(r) . (4.13)

– 10 –



J
H
E
P
0
8
(
2
0
0
8
)
0
6
7

Again using the perturbative method (3.10) we are able to compute the corrections to the

supergravity solution, i.e.,

K(r) =

(

1 − r30
r3

)
1
2
[

1 +
γ

L6

(

kR11

L

)3(

− 136
r30
r3

− 136
r60
r6

+ 88
r90
r9

)]

,

P (r) =
L2

2r2

(

1 − r30
r3

)− 1
2
[

1 +
γ

L6

(

kR11

L

)3(

4 + 136
r30
r3

+ 136
r60
r6

− 536
r90
r9

)]

, (4.14)

and the differential equation for Z(r) is given by

0 = −3r11L6(r3−r30)Z ′′(r)−3L6r10(r3−r30)Z ′(r)−420r12L6Z(r)+816r12+2592r120 . (4.15)

The correction of the dilaton field does not enter into the entropy in which we are interested.

We are going to calculate the entropy from the Wald formula (3.16). In terms of r0 it

is

S =
4πV2VCP 3L5r20

2kR11κ
2
10

(

1 + 112
γ

L6

(

kR11

L

)3
)

, (4.16)

where the first term is the area of the horizon and the second term is coming from the W

terms. The temperature in terms of r0 is

T =
3r0

2πL2

(

1 + 76
γ

L6

(

kR11

L

)3
)

, (4.17)

and the entropy in terms of temperature becomes

S =
8π3L9V2VCP 3T 2

9kR11κ2
10

(

1 − 40
γ

L6

(

kR11

L

)3
)

. (4.18)

Using the relations 2πR11

κ2
11

= 1
κ2
10

, 2π Vol(CP 3) = Vol(S7), l11 = g
1/3
2 ls and 2κ2

11 =

(2πl11)
9/2π one finds

S =
2

7
2π2

33

N2

√
λ
V2T

2

{

1 − 5ζ(3)

π32
17
2 λ3/2

}

. (4.19)

Here also the result is valid for the strong ’t Hooft coupling and for large N . The first

term is the same as the corresponding term in the M-theory. The second term is resulted

from the first α′ correction to the type IIA supergravity action. The structure of this term

is very different from the one loop correction in the M-theory side, but the behavior of

correction as inverse of the ’t Hooft coupling is very similar to the familiar AdS5 ×S5 case

in [12].

5. M5-branes in flat space

The thermal field theory of N M5 branes in flat space is dual to M-theory on Schwarzschild

AdS7 × S4. The entropy of the field theory at the strong coupling is given by the entropy

of the tree-level Schwarzschild AdS solution,

S = V5T
5 27

36
π3N3 . (5.1)
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In this section we would like to find the one loop corrections to this entropy. The near

horizon geometry of N M5-branes at the supergravity level is AdS7 Schwarzschild times

S4. By including the higher derivative terms we need to consider a general ansatz and

again find deformations of this near horizon geometry. Using the observation in M2-brane

case that there is an ansatz in which the area of horizon in terms of the parameter r0 is

independent of the higher derivative corrections, we use the following ansatz for M5- branes

ds2 = S− 8
5 (r)H2(r)

(

K2(r)dτ2 + P 2(r)dr2 +
5
∑

i=1

dx2
i

)

+ L2S2(r)dΩ2
4 , (5.2)

where H(r) = r
L . At tree-level the above functions are

K(r) =

(

1 − r60
r6

)
1
2

, P (r) =
2L2

r2

(

1 − r60
r6

)− 1
2

, S(r) = 1 , (5.3)

where we have changed the variable r in (2.5) to
√
rL and made the space-time Euclidean.

The electric field strength at tree-level is also given by Fτx1...x5r = 6 r5

L6 . Considering the

fact that the charge of M5-branes is independent of the loop corrections, we restrict the

field strength of M5-branes to the following form

Fτx1...x5r =
3r7

L8
K(r)P (r)S

51
5 . (5.4)

The Euclidean action then simplifies to

I = −βV5V4

2κ2
11

∫

dr

(

L + γW
)

, (5.5)

where

L = S− 8
5 r7L−3KP

(

R− 1

2

1

7!
F 2

(7)

)

, W = S− 8
5 r7L−3KPW . (5.6)

Here also the right hand side of the Euler-Lagrange equation belong to the next order of

perturbations so we just need to compute it by inserting the tree-level solutions. The value

of W is

W =
9

8000L8

(

1533 + 7000
r120

r12
− 11000

r180

r18
+ 45625

r240

r24

)

. (5.7)

Note that only the last term is the value of W for seven dimensional Schwarzschild AdS7

considered in [12]. The derivatives of W in (3.7) which appear as source terms for the

equations of motion are

ωK =
3

4000

1

L9r16(r6 − r60)
1
2

(

6298875r240 − 5507000r180 r6 + 121400r120 r12 + 6351r24
)

,

ωP =
3

8000

(r6 − r60)
1
2

L11r20

(

1030875r240 − 181000r180 r6 + 63400r120 r
12 + 6351r24

)

,

ωS = − 27

2500

1

L9r19

(

4599r24 − 44000r12r120 + 234000r6r180 − 243625r240

)

. (5.8)
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Using the perturbative method to solve the Euler-Lagrange equations, i.e.

K(r) =

(

1 − r60
r6

)
1
2

(1 + γX(r)) ,

P (r) =
2L2

r2

(

1 − r60
r6

)− 1
2

(1 + γY (r)) ,

S(r) = (1 + γZ(r)) , (5.9)

one finds the following differential equations

0 = −20000r19(r6 − r60)L
6Y ′(r) − 120000r24L6Y (r)

−19053r24 − 364200r12r120 + 16521000r6r180 − 18896625r240 ,

0 = 20000r19L6(r6 − r60)
2X ′(r) − 120000r24L6(r6 − r60)Y (r)

−19053r30 + 19053r24r60 + 733200r12r180 − 3635625r6r240

−190200r18r120 + 3092625r300 ,

0 = −28800r19L6

(

r(r6 − r60)Z
′′(r) + (7r6 − r60)Z

′(r) − 72r5Z(r)

)

+
993384

5
r24 − 10524600r240 + 10108800r6r180 − 1900800r12r120 . (5.10)

The solution to the first two equations are

X(r) = − 1

L6

(

c+
21299

1600

r60
r6

+
4999

320

r120

r12
− 2749

320

r180

r18

)

,

Y (r) = − 1

L6

(

6351

40000
− 21299

1600

r60
r6

− 5231

320

r120

r12
+

16797

320

r180

r18

)

, (5.11)

where c is a constant which can be set to zero by time scaling, up to first order of γ. Here

also the differential equation for Z(r) does not have such a simple solution. However we

do not need to know this solution for finding the thermodynamical quantities T and S in

which we are interested. So we ignore Z(r) from now on in this section.

The temperature of the black hole can be found by surface gravity at the horizon

κ̂ = 2πT =
√
grr

d

dr

√
gττ |H =

3

2

r0
L2

(

1 +
γ

L6

105901

40000

)

. (5.12)

Using the ansatz (5.2), one observes that the horizon area in terms of r0 does not modify

by the higher derivative corrections so the first term in the Wald formula (3.16), which is

the area of horizon at leading order does not modify either. So we need only the tree-level

solution to calculate the first term in the Wald formula (3.16)

S1 =
4π

2κ2
11

V5V4
r50
L
. (5.13)
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On the other hand the second term is proportional to γ, so to first order of γ one has to

replace the tree-level solution into the second term too, i.e.

S2 =
4π

2κ2
11

V5V4
r50
L

(

12597

500

γ

L6

)

. (5.14)

So the final result for the entropy in terms of the temperature is

S =
V5V4

2κ2
11

(

212

35
π6L9T 5

)(

1 +
95651

8000

γ

L6

)

. (5.15)

Inserting L9 = N3κ2
112

−7π−5 where N is the total number of M5-branes and V4 = 8π2

3 , one

finds

S = V5T
5

(

27

36
π3N3 +

95651

8000

(

2π

3

)8

3
(π

2

)
1
3
26N

)

. (5.16)

Using the same steps as before for obtaining the free energy, one finds the following result

for the free energy

F = −V5V4

2κ2
11

1

2

r60
L3

(

1 +
1113661

40000

γ

L6

)

= −V5V4

2κ2
11

(

2048

729
π6L9T 6

)(

1 +
95651

8000

γ

L6

)

, (5.17)

which gives exactly the same entropy as in (5.15)
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[arXiv:0804.2662];

J.P. Gauntlett and J.B. Gutowski, Constraining maximally supersymmetric membrane

actions, arXiv:0804.3078;

G. Papadopoulos, On the structure of k-Lie algebras, Class. and Quant. Grav. 25 (2008)

142002 [arXiv:0804.3567];

P.-M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629];

A. Morozov, From simplified BLG action to the first-quantized M-theory, arXiv:0805.1703;

Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Janus field theories from multiple M2 branes,

Phys. Rev. D 78 (2008) 025027 [arXiv:0805.1895];

H. Fuji, S. Terashima and M. Yamazaki, A new N = 4 membrane action via orbifold,

arXiv:0805.1997;

P.-M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple

M2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898];

C. Krishnan and C. Maccaferri, Membranes on calibrations, JHEP 07 (2008) 005

[arXiv:0805.3125];

Y. Song, Mass deformation of the multiple M2 branes theory, arXiv:0805.3193;

– 15 –

http://jhep.sissa.it/stdsearch?paper=07%282008%29041
http://arxiv.org/abs/0806.1639
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3427
http://arxiv.org/abs/gr-qc/9307038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C3684
http://arxiv.org/abs/hep-th/9305016
http://arxiv.org/abs/gr-qc/9502009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C87%2C577
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://jhep.sissa.it/stdsearch?paper=05%282008%29085
http://arxiv.org/abs/0803.3218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB802%2C106
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB802%2C106
http://arxiv.org/abs/0803.3611
http://jhep.sissa.it/stdsearch?paper=05%282008%29105
http://arxiv.org/abs/0803.3803
http://jhep.sissa.it/stdsearch?paper=05%282008%29076
http://arxiv.org/abs/0804.0913
http://arxiv.org/abs/0804.1784
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://jhep.sissa.it/stdsearch?paper=06%282008%29020
http://arxiv.org/abs/0804.2110
http://jhep.sissa.it/stdsearch?paper=08%282008%29002
http://arxiv.org/abs/0804.2186
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142001
http://arxiv.org/abs/0804.2201
http://arxiv.org/abs/0804.2519
http://jhep.sissa.it/stdsearch?paper=05%282008%29054
http://arxiv.org/abs/0804.2662
http://arxiv.org/abs/0804.3078
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C25%2C142002
http://arxiv.org/abs/0804.3567
http://jhep.sissa.it/stdsearch?paper=06%282008%29105
http://arxiv.org/abs/0804.3629
http://arxiv.org/abs/0805.1703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD78%2C025027
http://arxiv.org/abs/0805.1895
http://arxiv.org/abs/0805.1997
http://jhep.sissa.it/stdsearch?paper=08%282008%29014
http://arxiv.org/abs/0805.2898
http://jhep.sissa.it/stdsearch?paper=07%282008%29005
http://arxiv.org/abs/0805.3125
http://arxiv.org/abs/0805.3193


J
H
E
P
0
8
(
2
0
0
8
)
0
6
7

I. Jeon, J. Kim, N. Kim, S.-W. Kim and J.-H. Park, Classification of the BPS states in

Bagger-Lambert theory, JHEP 07 (2008) 056 [arXiv:0805.3236];

M. Li and T. Wang, M2-branes coupled to antisymmetric fluxes, JHEP 07 (2008) 093

[arXiv:0805.3427];

K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons

theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662];

S. Banerjee and A. Sen, Interpreting the M2-brane action, arXiv:0805.3930;

H. Lin, Kac-Moody extensions of 3-algebras and M2-branes, JHEP 07 (2008) 136

[arXiv:0805.4003];

P. De Medeiros, J.M. Figueroa-O’Farrill and E. Mendez-Escobar, Lorentzian Lie 3-algebras

and their Bagger-Lambert moduli space, JHEP 07 (2008) 111 [arXiv:0805.4363];

A. Gustavsson, One-loop corrections to Bagger-Lambert theory, arXiv:0805.4443;

J.-H. Park and C. Sochichiu, Single M5 to multiple M2: taking off the square root of

Nambu-Goto action, arXiv:0806.0335;

F. Passerini, M2-brane superalgebra from Bagger-Lambert theory, arXiv:0806.0363;

C. Ahn, Holographic supergravity dual to three dimensional N = 2 gauge theory,

arXiv:0806.1420;

M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories

and AdS4/CFT3 correspondence, arXiv:0806.1519;

S. Cecotti and A. Sen, Coulomb branch of the lorentzian three algebra theory,

arXiv:0806.1990;

A. Mauri and A.C. Petkou, An N = 1 superfield action for M2 branes, arXiv:0806.2270;

E.A. Bergshoeff, M. de Roo, O. Hohm and D. Roest, Multiple membranes from gauged

supergravity, arXiv:0806.2584;

P. de Medeiros, J.M. Figueroa-O’Farrill and E. Mendez-Escobar, Metric Lie 3-algebras in

Bagger-Lambert theory, arXiv:0806.3242;

M. Blau and M. O’Loughlin, Multiple M2-Branes and Plane Waves, arXiv:0806.3253;

Y. Honma, S. Iso, Y. Sumitomo and S. Zhang, Scaling limit of N = 6 superconformal

Chern-Simons theories and lorentzian Bagger-Lambert theories, arXiv:0806.3498;

T.L. Curtright, D.B. Fairlie and C.K. Zachos, Ternary Virasoro-Witt algebra,

arXiv:0806.3515;

C. Sochichiu, On Nambu-Lie 3-algebra representations, arXiv:0806.3520;

Y. Imamura and K. Kimura, Coulomb branch of generalized ABJM models,

arXiv:0806.3727;

J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons,

arXiv:0806.3951;

T.A. Larsson, Virasoro 3-algebra from scalar densities, arXiv:0806.4039;

K. Furuuchi, S.-Y.D. Shih and T. Takimi, M-theory superalgebra from multiple membranes,

arXiv:0806.4044;

A. Armoni and A. Naqvi, A non-supersymmetric large-N 3D CFT and its gravity dual,

arXiv:0806.4068;

A. Agarwal, Mass deformations of super Yang-Mills theories in D = 2 + 1 and

super-membranes: a note, arXiv:0806.4292;

D. Gaiotto, S. Giombi and X. Yin, Spin chains in N = 6 superconformal

Chern-Simons-matter theory, arXiv:0806.4589;

I.A. Bandos and P.K. Townsend, Light-cone M5 and multiple M2-branes, arXiv:0806.4777;

C. Ahn, Towards holographic gravity dual of N = 1 superconformal Chern-Simons gauge

theory, JHEP 07 (2008) 101 [arXiv:0806.4807];

– 16 –

http://jhep.sissa.it/stdsearch?paper=07%282008%29056
http://arxiv.org/abs/0805.3236
http://jhep.sissa.it/stdsearch?paper=07%282008%29093
http://arxiv.org/abs/0805.3427
http://jhep.sissa.it/stdsearch?paper=07%282008%29091
http://arxiv.org/abs/0805.3662
http://arxiv.org/abs/0805.3930
http://jhep.sissa.it/stdsearch?paper=07%282008%29136
http://arxiv.org/abs/0805.4003
http://jhep.sissa.it/stdsearch?paper=07%282008%29111
http://arxiv.org/abs/0805.4363
http://arxiv.org/abs/0805.4443
http://arxiv.org/abs/0806.0335
http://arxiv.org/abs/0806.0363
http://arxiv.org/abs/0806.1420
http://arxiv.org/abs/0806.1519
http://arxiv.org/abs/0806.1990
http://arxiv.org/abs/0806.2270
http://arxiv.org/abs/0806.2584
http://arxiv.org/abs/0806.3242
http://arxiv.org/abs/0806.3253
http://arxiv.org/abs/0806.3498
http://arxiv.org/abs/0806.3515
http://arxiv.org/abs/0806.3520
http://arxiv.org/abs/0806.3727
http://arxiv.org/abs/0806.3951
http://arxiv.org/abs/0806.4039
http://arxiv.org/abs/0806.4044
http://arxiv.org/abs/0806.4068
http://arxiv.org/abs/0806.4292
http://arxiv.org/abs/0806.4589
http://arxiv.org/abs/0806.4777
http://jhep.sissa.it/stdsearch?paper=07%282008%29101
http://arxiv.org/abs/0806.4807


J
H
E
P
0
8
(
2
0
0
8
)
0
6
7

J. Bedford and D. Berman, A note on quantum aspects of multiple membranes,

arXiv:0806.4900;

G. Arutyunov and S. Frolov, Superstrings on AdS4 × CP 3 as a coset σ-model,

arXiv:0806.4940;

B.J. Stefanski, B., Green-Schwarz action for Type IIA strings on AdS4 × CP 3,

arXiv:0806.4948;

G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of

N = 6 superconformal Chern-Simons theory, arXiv:0806.4959;

K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons

Theories and M2-branes on orbifolds, arXiv:0806.4977;
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